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ON T H E  INTERPRLTATION O F  CORRELATION COEFFICIENTS IN T H E  ANALYSIS O F  CAUSAL RELATIONS IN 

PI1 Y S I C A L PH EN 0 M EN A 

BY EDGAR \v. WOOL.4RD 

It has often been eniphasized that statistical investi- 
gation includes a great deal more than the mere collec- 
tion and tabulation of numerical data, and the compu- 
$ation of tlie various indices and coefficients. The most 
important, and in general, the iiiost difficult, part of a 
statistical study is the interpretation of the arithmetical 
results; in other words, we must distinguish between sta- 
tistical description and statistical i)<ference. The deter- 
mination of the physical meaning of correhtion coefx- 
cients is a particularly intricate end difficult pro!,lein : 
The importance of a ‘‘ significiant ” coefficient d e p e d s  
jointly on its size and the purposes it is to serve; the 
coefficient is n n  index of coiicnriiitaot variation, hut if 
the regression “equation” formed froill i t  is to be of 
value for prediction, the variables must be highly corre- 
lated (1) ;  on the other hand, if correlation h,rs been em- 
ployed primarily for the purpose of discovering what 
relations, if any, exist between cliff erent vitriables, a 
sinal1 coefficient is just :is likely to give valuable infor- 
mation as n large one. However, the coefficient itself 
indicates only the resultant covariation due to all tlie 
connecting p t h s  of influence, and is no index whatever 
to physical cause and effect (9).  We must cnrefully 
discriminnte between ctrucal connection and mere coaaricr- 
tion; aiid not infrequently the interpretation of a given 
coefficient in terms of the former is dimcult or impossible, 
even though after having ohserved all possible precau- 
tions we are convinced it is statistically significant. 

Attenipts a t  the determination of causes by statistical 
methods-e. g., by Bayes, Kapteyn, hIcEwen and 
Michael, and others-do not seern to have proved, in 
general, very successful; however, the results of recent 
investigations (3) seem to show that the theory of corre- 
lation gives promise of being able to effect a certain 
amount of proqress toward the solution of this problem. 
The law of causality and the doctrine of uniforniity, 
which constitute the foundation of all human knowledge, 
imply the coniplete and unique deterininittion of each 
phenomenon by some definite complex of causes ; our 
problem in any given case is to find what portion of the 
variation of wme given quantity 9’” is directly caused 
by (not merely simultaneous with) given variations in 
each of all the various quantities SI, A’?, . . . . influencing 
X’o. The fundamental principles mentioned above int- 
ply the existence of some definite niatheniatical equation 
f (X’O, XI, X?, . . . . .) = O  which, if i t  could be found, 
would supply the solution of our problem. Probably all 
phenomena are determined by an indefinitely great nwn- 
ber of causes; in the “exact” sciences, however, we deal 
with phenomena that involve a very few highly correlated 
variables together with R greater or less nuniber of in- 
fluences either negligible or else subject to contrvl or 
elimination, and we can find, more or less easily, a 
mathematical function-“ theoretical ” (deductive) or 
“empirical ’’ (inductive)-connecting the variables, that 
accurately expresses the phenomenon by an exact equa- 
tion (at least over a certain range) escept for the inevi- 
table small “accidental errors” due to the neglected in- 
fluences; but many natural phenomena are the result of 
the simultaneous action of a very great nuniber of in- 
fluences all of coordinate importance, mutually corre- 
lated in highly varying degrees, and difficult or impossible 
to isolate or control. For use under these latter circum- 
stances, the methods of statistics have been devised, in 

which the concepts of contitigenc-j and correlation are 
substituted for those of causation nnd functionality. Of 
cuurse, there exists every pos-ihle gradation between the 
two extremes (4) .  

Let 
37’0 =-f(X,, &, . . . . , s,, x n + l ,  -Y.+a, . . . . .) 

s, =(I  ,s, + a+Tl + . . . . . . . . . . +axXx+C, 

(1) 
!)e the (unknown) coniplete and esaci relation expressing 
a givwi phenomenon. Let N, be the mean of X‘, and put 

(2) 
n 

I =  1 
where C‘=& - 2 3 7 ,  lui. Then the actual, or observed, 

vdue will be LY’~, the vdue computed by (2) from the 
uhwrvecl vJiieq of the S, will Le Xo, and the error of 
estiriinte will be 

Let .cl=-Yt- Ji, be tlie departure, and ut the standard 
deviation, of 5,; and put z,=.rJc,. Then (2) becomes 

(3 1 
(4 1 

where e ,  = a i  (ct/co). The 5, niny be inutually correlated 
in any manner, fJut the assumption will here be made 
that all relations are Zinenr. The theory of linear partial 
correlatinn determines the cr so that the sum of the 
squares of the errors of estimate is a minimum; the ai 
then become partial regression coefficients-the regres- 
sions of So on the Xi when the remaining variables are 
held constant-and c,z,  is the contribution of z,  to 2:. 
The ordinary reqression equation formed from a gross 
correlation coefficient gives the average value of one 
variable msociated with any pnrticudar value of another 
variable: ;P,=rtj ( c i / u j ) z j ;  thus on the noerage, for any 
given value of zb, the value of z, is zl=rOfzb;  and Kri- 
chewsky (3)  points out that therefore the successive 
terrns on the right of 

~ ~ = c ~ r ~ ~ z b + c ~ r ~ ~ ~ ( , + .  . . . . . . . . . +cnronzb 

J’o = C 1 I . q  + (Lax? + . . . . . . . . . + a&“, 
P o = C I 2 , + C * z ~ + .  . . . . . . . . f C , Z n ,  

- 

- 

71 n 
= z ’ ~  C r o , c 1 = & C  E,, (5 )  

1=1 :=1 

give the parts of the variation of Xo which in the long run 
are clue to the fluctuations in each of the X,.  Krichewsky 
proves that S E is equ:l! to the squcrre of the ordinary 
multiple correlation coeilL ient  (correlation between Xo 
and X,), which quantity 1 lerefore measures the exactness 
of (2); if ( 3 )  is exact ancl complete, Z E=1 and X b = X o .  

If we adopt the square of the st,andard deviation, or 
onrinnce, as a measure of variation “on the average”, or 
“in the long run”, then, as Krichewsky shows, the E,, 
divide the variance of So among the causes in such a way 
as to supply fair and adequate quantitative measures of 
the extent to which each of the complete set of causes 
affects An E may Le either positive or negative; the 
percentage of the variance of Xo due to Y t  is 

I t  seems to the reviewer, however, that if in practise we 
find S Eat is not, close to unity, then what ( 6 )  measures 
is not t,he percentage of ub clue to X, ,  but the percentage 
of a, clue to X,-i. e., the percentage of that  part of the 
variat,ion of X o  which @) takes into account. 

The fact that for any two variables we may always 
write x, = rtJ (uI/uj) zJ + e, where the niean of e is zero, so 
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that u 3r=P1ju?+ ( l -?pu)u~, does not permit us to hold 
X, responsible for the share rZt5 of aZi, unless X ,  is com- 
pletely independent of all the other causes of X,, in which 
case, as Krichewsky shows, E,, = r z f j ;  in this particular 
case, Dined8 law holds, but if r f5  is the result of intricate 
intercorrelation between Xi and a number of mutually 
correlated causes, then r 2 f j  merely measures the degree of 
covariution between Xi and X,; the measure of causal con- 
nection is Etj .  If all the Xf are mutually independent, 
and if (2) is ~zuct ,  then 

The analysis of the variance of a composite variable 
by means of the Ear, together with a careful study of the 
partial correlation coefficients, should be of material 
assistance in seeking a physical esplanation for a series 
of gross coefficients and in evaluating the relative im- 
portance of different causal factors, although there still 
remains need for caution in drawing final conclusions, 
particularly (it seems to the reviewer) if S E P l .  In  
this connection, it is helpful to have a t  hand, for com- 
parison purposes, the relations which hold in various 
special cases: For example, if three variables esactly sat- 
isfy the relation ~ ~ = a z ~ + B t ~ ,  and if r23=0, then if the 
partial correlation coefficient actually accomplishes what 
it is supposed to, we should have ~ ~ ~ . ~ = r ~ ~ . ~ =  1.00; and 
it is a matter of simple, though somewhat cumbersome, 
algebra to show that this is the case ( 5 ) ;  hence 
91,(1 -rBlr) = + 1 3 ( 1  -r213), from which, and the formulse 
for the regression coefficients, =a (ua/ul ) ,  r13= b(ug/ul)Z; 
then E,, = (aaun2)/a?, &= (bzu32)/a12; u12 = ElaalZ + E,,al ; 
Z P=Z E= 1; and z l = r l l z n + r 1 3 ~ .  Again, if Ml and M2 
are two effects of the cause A3, r1a.3 = 0, rl ,  =rI3rz3, r13.a = r13) 

n 
r 2 o t  = 1. 

1=1 

r23.1=r23; this case has been discussed in some detail by 
C. F. Marvin in the preceding paper. If A,,  A, are the 
two causes of a result MI, and are themselves correlated, 
r12.3 =r13.2=r23.1 = 1. And so on. 

As an illustration of how the above principles may be 
made to aid in the interpretation of correlation coeffi- 
cients from the viewpoint of cause and effect, Icrichewsky 
applies them to some of W. H. Dines's well-known 
coefficients; an extended investigation of this character 
would probably bring out clearly the physical implication 
of these coefficients and help appreciably in answering 
the many interesting questions raised by them. 

LITERATURE CITED 
( I )  DINES, W. H. 

1915. FORECASTING WE.4TIIER BY MEANS O F  CORRELATION. 
Met'l. Mag., 50: 3CL31. 

WALKER, G .  T. 

(8) WHIPPLE, F. J. W. 
1926. ON CORRELATION COEFFICIENTS, THEIR CALCULATION 

AND USE. Qurrr. Jour. R u ~ .  Met. Soc., 52:73-84. 

1924. T H E  SIGNIFICANCE OF REGRESSION EQUATIONS IN T H E  
ANALYSIS OF UPPER A I R  OBSERVATIONS. QIlar. 
Jour. Roy. Met. Soc., 50:1237-343. 

(.?) W R I G H T ,  S. 
1921. CORRELATION A N D  CAUSATION. Jour. Agr. Res., 

20: 557-565. 
KRICHEWSKY, S. 

1927. INTERPRETATION OF CORRELATION COEFFICIENTS. 
Ministry of PulAic Works, Egypt, Phya. Dept. 
Pap. 22. Cairo. 

( 4 )  PEARSON, Ii. 

(6) PHILLIPS, F. M. 
1911. GRAMMAR OF SCIENCE. Pt. I. 3 ed. London. 

1923. APPLICATION OF PARTIAL CORRELATION TO A HEALTH 
PROBLEM. 
pp. 2117-2129. Washington. 

Public Health Reports, vol. 38, No. 37, 

A STUDY OF T H E  POSSIBILITY OF ECONOMIC VALUE I N  STATISTICAL INVESTICIATIONS O F  RAINFALL 
PERIOD1 ClTl  ES 

By DINSMORE ALTER 
[University of Kansas, Lawrence, Kms., December 18,1926) 

In this series of papers embodying a systematic statis- 
tical investigation of the world's rainfall, an attempt has 
been made to refrain from all speculation and to present 
the evidence so far as possible from the viewpoint of 
mathematical probabilities of periods versus accidental 
relationships. For this reason both the causes and the 
economic value have not been mentioned beyond the 
briefest discussion several years ago. 

It seems wise, however, a t  the conclusion of the work 
to make an attempt to learn whether the periodicities 
found have only a purely scientific interest, or in addition, 
a possible economic value. Such a value could a t  the 
most only pretend to divide seasons in advance into wet, 
normal, and dry, where wet is defined as including all 
which average among the wettest third of the data, dry 
those among the driest third, and normal the remainder. 
On the basis of accident such predict'ions should be ful- 
filled one time out of every three. The work done 
indicates that in the long run such predictions alniost, 
certainly can be made with a t  least a slight increase over 
this fraction. However, unless the increase is rather 
large they will have no interest save a purely scientific 
and statistical one over many years. 

To be conclusive, such an investigation must do two 
things : 

(a) It must examine the data already available, in 
order that we may know the percentage of times the 
periods found will represent the data used in finding 
them, to this accuracy. 

( b )  It must make test predictions that we may follow 
them through the future and thus weight their value. 
It is certain that in the long run these can not be fulfilled 
as accurately as the past representations, for the acci- 
dental errors are certain to have modified, more or less, 
the periods found. In  addition, periods, of greater or 
shorter length will have an effect. 

It is very important, to note that even if we had data 
which were entirely free from accidental errors and from 
periods other than those obtained and used in predic- 
tion, and even though we knew perfectly the magnitudes 
and phase relationships of these periods, they would not 
correctly predict the means for a given stretch of time. 
In  two of the papers of this series, the effect of the datum 
interval on the magnitude of the amplitude has been 
investigated and a factor F determined by which multi- 
plication is necessary in order to reduce the amplitude 
or the intensity found, to what it would have been had 
much shorter intervals been used. When we have the 
reverse problem it is necessary that we divide by this 
factor before predicting. If the predictions are to be 
made for the same interval used in the original periodo- 
gram the factor is eliminated. If not, we must multiply 
the amplitude obtained from the periodogram by the F 
corresponding to that ratio of period length to datum 
interval and divide by that of the ratio to the predicted 
datum interval. If we do not do this, short periods will 
exert far too great aninffuence on our predictions and cause 
them to fail. I n  the present preliminary paper, where 


